Powered By Blogger

jueves, 5 de enero de 2012

ECUACIONES DE LA CIRCUNFERENCIA

Ecuación en coordenadas cartesianas
En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (a, b) y radio r consta de todos los puntos (x, y) que satisfacen la ecuación
(x-a)^2 + (y-b)^2 = r^2\,.
Cuando el centro está en el origen (0, 0), la ecuación anterior se simplifica al
x^2 + y^2 = r^2\,.
La circunferencia con centro en el origen y de radio la unidad, es llamada circunferencia goniometrica circunferencia unidad o circunferencia unitaria.
De la ecuación general de una circunferencia,
(x-a)^2 + (y-b)^2=r^2 \,
se deduce:
x^2+y^2+Dx+Ey+F=0 \,
resultando:
a = -\frac{D}{2}
b = -\frac{E}{2}
r = \sqrt{a^2 + b^2-F}
Si conocemos los puntos extremos de un diámetro: (x_1,y_1), (x_2,y_2)\,,
la ecuación de la circunferencia es:
(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.\,
Ecuación vectorial de la circunferencia

La circunferencia con centro en el origen y radio R, tiene por ecuación vectorial: \vec r\ =\langle R\cos(\theta),R\sin(\theta)\rangle \, Donde teta es el parámetro de la curva, además cabe destacar que   Se puede deducir fácilmente desde la ecuación cartesiana, ya que la componente X y la componente Y, al cuadrado y sumadas deben dar por resultado el radio de la circunferencia al cuadrado. En el espacio esta misma ecuación da como resultado un cilindro, dejando el parámetro Z libre.

Ecuación en coordenadas polares


Unit circle.svg
Cuando la circunferencia tiene centro en el origen y el radio es c, se describe en coordenadas polares como (r,\theta) \,
 r=c. \,
Cuando el centro no está en el origen, sino en el punto (s,\alpha) \, y el radio es c \,, la ecuación se transforma en:
r^2 - 2 s r\, \cos(\theta - \alpha) + s^2 = c^2

 Ecuación en coordenadas paramétricas

La circunferencia con centro en (a, b) y radio c se parametriza con funciones trigonométricas como:
x=a + c \cos t,\ y=b+c\sin t,\qquad t\in[0,2\pi]
y con funciones racionales como
x=a+c\left(\frac{1-t^2}{1+t^2}\right),\ y=b+c\left(\frac{2t}{1+t^2}\right),\qquad -\infty\leq t\leq \infty

No hay comentarios:

Publicar un comentario